Application of Dempster-Shafer evidence theory to unsupervised classification in multisource remote sensing
نویسندگان
چکیده
The aim of this paper is to show that Dempster–Shafer evidence theory may be successfully applied to unsupervised classification in multisource remote sensing. Dempster–Shafer formulation allows to consider unions of classes, and to represent both imprecision and uncertainty, through the definition of belief and plausibility functions. These two functions, derived from mass function, are generally chosen in a supervised way. In this paper, we describe an unsupervised method, based on the comparison of monosource classification results, to select the classes necessary for Dempster–Shafer evidence combination and to define their mass functions. Data fusion is then performed, discarding invalid clusters (e.g., corresponding to conflicting information) thank to an iterative process. Unsupervised multisource classification algorithm is applied to MAC-Europe’91 multisensor airborne campaign data collected over the Orgeval French site. Classification results using different combinations of sensors (TMS and AirSAR) or wavelengths (L and C bands) are compared. Performance of data fusion is evaluated in terms of identification of land cover types. The best results are obtained when all three data sets are used. Furthermore, some other combinations of data are tried, and their ability to discriminate between the different land cover types is quantified.
منابع مشابه
Land Cover Classification Information Decision Making Fusion Based on Dempster-Shafer Theory: Results and Uncertainty
Land cover plays a significant role in the earth system science, which reflects the influence of human activities and environmental changes (Sellers et al., 1997; IGBP, 1990; Aspinall et al, 2004). In China, Many land use/cover maps can be used in recent years derived from remote sensing observation. These data will be whether or how combined effectively to produce better land cover map that is...
متن کاملWoodland Extraction from High-Resolution CASMSAR Data Based on Dempster-Shafer Evidence Theory Fusion
Mapping and monitoring of woodland resources is necessary, since woodland is vital for the natural environment and human survival. The intent of this paper is to propose a fusion scheme for woodland extraction with different frequency (Pand X-band) polarimetric synthetic aperture radar (PolSAR) and interferometric SAR (InSAR) data. In the study area of Hanjietou, China, a supervised complex Wis...
متن کاملEvaluation of Multiple Classifier Combination Techniques for Land Cover Classification Using Multisource Remote Sensing Data
Use of multisource remote sensing data, particularly Synthetic Aperture Radar (SAR) and optical images, can improve performance of land cover classification since many types of information are involved in the classification process. Recently, the multiple classification systems (MCS) or ensemble classifiers has been developed and increasingly used for classifying remote sensing data. It is cons...
متن کاملMultisource classification using ICM and Dempster-Shafer theory
We propose to use evidential reasoning in order to relax Bayesian decisions given by a Markovian classification algorithm (ICM). The Dempster–Shafer rule of combination enables us to fuse decisions in a local spatial neighborhood which we further extend to be multisource. This approach enables us to more directly fuse information. Application to the classification of very noisy images produces ...
متن کاملA Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence
This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Geoscience and Remote Sensing
دوره 35 شماره
صفحات -
تاریخ انتشار 1997